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Using a newly introduced concept of an integral in the tensor calculus [l], we 
obtain novel covaciant integrals of equations of motion of a system for genecal- 
ized forces of specific structure. We consider the problem of full covariance of 
the equations of motion in the configurational space, and obtain a new covaciant 
form of the equations of motion of a system in cucvilineac coordinates. The co- 
variant integcability of these equations leads to reformulation of a fundamental 

axiom of dynamics. 

1, We know that the second order Lagrange equations of motion for a holonomic sys- 

tern 
d aT aT 

----=n~~q “6 _ 1 

dt aq a ap 
a& ,‘I’4iy = (2, (1.1) 

can yield, under certain conditions, integrals of energy and impulse, or cyclic integrals. 

Other general integrals of the Lagrange equations (1.1) cannot be obtained even when 
the generalized forces ace equal to zero. 

We find that we can use the absolute tensor integral [l] to integrate the system of equa- 
tions in question in its general form not only for the case when Q, = 0, but also for a 

wider class of generalized forces Q, = Q, (ql, . . ., qn, 4”. . ., qen; t). 

In fact, let us write the differential equations (1.1) in the form 

(1.2) 

Here D / dt denotes the operator of the absolute time derivative and per = a,@‘@ is the 

generalized impulse of the system in the V, -configurational space. (The latter relation 

is also valid for a rheonomous system in an extended ( n + 1 )-dimensional space V,,, , 

but here we shall only consider a scleronomous system). 
We shall show that Eqs, (1.2) admit, under certain conditions, covaciant integrals in the 

case of generalized forces of the form 

Q,=R,+S,@ (CL, fl=i, 2, . . . . n) 

R, = R, (q’, g?, . . ., qn), S,@ = Sap (8, q2, . . .T C?) 
(1.3) 

where R, are the coordinates of the parallel-tc~slatable vector, Sap is the covaciantly 
constant tensor and Fa -; Fp (t) represent the integrable functions of time t. 

Substituting (1.3) into (1. ‘2), we obtain a system of initial covaciant equations of mo- 
tion in the form 

D (ar/aq'a) = (R, + S,p@) Dt (1.4) 

since the absolute differential Dt of the scalar t is equal to the differential dt of this 
same scalar. 

In [l] it is shown that the absolute tensor integral 
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where A!::: (X, M) is the covariantly constant tensor which is obtained from the initial 

condition by parallel translation along the trajectories, as is shown in [Z] . 

Let us perform the absolute tensor integration on both sides of Eq. (1.4) 

f D(s) = i (R,+S&Dt 

Taking into account the singularities of the absolute tensor integral, we obtain 

aT ic > D aT Al 
p =p- a 

From the assumption that R, = R, (q’, . . ., q”) and S,s = Sap (ql, . . ., q”) are paral- 
lel-translatable tensors [S], we have 

A 

s 
R,Dt = tR, (ql, . . ., qn) - Aaz 

? A 

J 
SaBFBDt = ~7,~ 

s 
Ffi (t) Dt - Aa* = 

S& (q’v P, . . ., P) f” (t) - AOP, fb (t) = s Fp (t) dt 

Here we take into account that fact that Fp (t) are scalar functions of time only, there- 
fore the absolute integral A 

F@ (t) Dt 
is equal to the integral 

and we thus obtain 
aT& = = tR, W, . . ., $7 + Sap W, . . ., q”) fP (t) + A, (1.5) 
A, = A,’ + A,2 + A,8 

where the vector A, is so far undetermined. 

In accordance with the assertions made in [l, 21, the vector A, represents in this case 
the vector aT / 3qea - tR, - S&P at the initialAinstant t = to, and is translated in pa- 
rallel along the trajectory into any of its points t. The problem of parallel translation 
of a vector is encountered in [4, 51. In [6] a bipoint tensor is established in a specific 
form, and is used to compute a parallel translation from one point to another, while the 
author of [7] shows some properties of this tensor. below we shall make use of the results 
obtained in these papers. 

In the configurational space the fundamental bipoint tensor mentioned above, hk the 
form 

. . .I qn; qo’. . . .I qb) 

If the initial conditions for a parallel-translatable vector A, are known, then in accord- 
ance with [2] we obtain 

A, = aa” @,k - toRk - S,&), Uak = UkbZal = Uak(ql, . . . . qn; qol, . . . . qon) 

where a,” denotes a mixed bipoint fundamental tensor of the configuration space V,, 
[6]. Therefore the first covariant integrals (1.5) of the equations of motion (1.4) are 
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-=tRa(ql I...1 qn)+Sap(ql ,..., qn)fP(d)+ aq'a (1.6) 

[Pk - toRk - S,,f’ PO)1 f&k (crl* . ..,q n. ,qol, . . . . QOT 
Let us consider the following particular cases : 

1”. When S,, = 0 or fa (t) = 0, the generalized force is a parallel-translatable 
vector Q, = I?= (ql, . . ., q”), and the relations ( 1.6) become 

aT/aq’a = % + (Pk - &Bk) ask 

2”. The same form of (1.6) is retained when R, = const. 

3”. When Q, = R, = 0 , we obtain n first covariant integrals of the form 

aT / aqsa = a,‘& (1.7) 

2, The differential equations of motion (1. 1) are usually called covariant ones, al- 
though their covariance is not fully preserved. We shall show this assertion, and below 
we shall derive the covariant differential equations of motion in a novel form which also 
enables us to determine the second covariant integrals. 

Denoting the momentum vectors of the points in a Cartesian coordinate system by 

Ki = {Ksi, Ksi-1, K,+,) = {K,) (i = 1, . , A”; Y = I, . , my 

the equations of motion of the system can be written in the form 

dK, / dt = F, (2.1) 

Comparing (2.1) with (1.2) we find that they are equivalent (2.1) e;, (1.2). Taking into 
account the fact that the differential operator dldt in the Cartesian coordinate system 
has a corresponding absolute differential operator D i dt in the curvilinear coordinate 
system, i.e. d / dt ++ D / dt and, that K, % pa and F, ~3 Q,, we conclude that Eqs. (2.1) 

are covariant. 
We note that the above conclusion cannot be reached when the expression dK, I dt is 

written in the usually adopted form as rn$+i ldt 2. In fact, the velocity vector is expressed 

in terms of the derivatives dqa/dt. Comparing dsj / dt +a dg’ / dt with the relations(2.1) 
we see that the absolute differential operator D / dt does not appear in the expressions 
for the velocities, i.e. the element of covariance is absent. To satisfy this requirement, 
we proceed from the definition @3] of the covariant position vector of the representative 
point in the curvilinear coordinate system 

(2.2) 

the time derivative of which is 

Since we know that a,? is a metric tensor and (a2ri/aqqaqB).arilayr= I’apv,u are the con- 
nectivity coefficients [9, lo], we conclude that the generalized impulse p, is equal to 
the absolute time derivative of the vector pa 
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pa = Dp,ldt (2.3) 

Substituting this into ( 1.2), we obtain the differential equations of motion of a mecha- 
nical holonomic scleronomous system in their fully covariant and contravariant form 

D2p, D4pB 
-=Qaex= 

dt2 QP (2.4) 

Comparing (2.4) with the equations m, (d%,/dP) = F,, we see that #/dP H Da/dP. 

Comparison of (2.4) with (1.1) however does not lead to the same conclusion. This 
means that the Lagrange equations of second kind in their explicit form are not covari- 
ant with respect to the second time derivative. It follows that the second covariant in- 
tegrals cannot be obtained from the known differential equations of motion. Incidentally, 
proceeding from Eqs.(2.4), we can obtain definite integrals of a system of nonlinear dif- 

ferential equations for a wider class of forces. For example, since aT/aq a = Dp,/dt, we 

obtain from (1. 6) A 

SD~,=~(rR,+S.~f~)Df+~(px--I,Ri,--~,f’)o,*D1 

and this yields the following covariant Integrals: 

tsR, 
P, =2 + S,a \ fa (r) dr + t 0~~ - loRk - S,,f’J aak + 4 

where A, is a parallel-translatable vector which can easily be found from the initial 

conditions by means of a parallel translation along the trajectory and pa, R,, Sap and 
aak are known functions of the coordinates q=- 

Equations (2.4) enable us to determine certain integrals even when velocity-dependent 
forces are present. For example, let the generalized forces 

Q, = b=pq’P = b=p -$ , b+ = bps (qL, . . . . qn) 

where b=p is a covariantly constant vector. Then applying the absolute tensor integral 

and using the above method, we obtain from (2.4) n first covariant integrals 

where 
pa = b,,-$ + “aA (PA - kmpB) 

DPQ 
dt t=t, =pA (a, p, A, B : I, 2, . . . . n) 

3, Equations (2.4) also describe the motion of a rigid body. To prove this, it is suf- 
ficient to determine the value of the fundamental tensor nap and of the connectivity 
coefficients I& for the coordinate system in which the motion of the rigid body is con- 
sidered. Let the radius vector of the i -th point of the body be ri = rc + r’i, the angu- 

lar velocity vector 0 = g’=‘e,, (a’ = 4, 5, 6) and the velocity of a point of the body 

ari .= arc ar,' 
ag,q =vq .=” + -j-p+= = q’=“e=. + q’=’ (e,, X r;) 

(a = 1, 2, . . .( 6; a”= i, 2, 3) 

Since eo- and e(,, X ri are independent vectors. we have 

% ar.’ 
:=-J--e ari 

a4”’ aq=’ 
=, X r,‘,ap,.-ee,, 
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The coordinates of the tensor aap are, by definition, 

s 

ar ar 
a,“pm = - . - dm = 

aq=” aqp” s 
e,,, .ey dm = rngartB” 

m m 

a=‘p = r 1 (eat 
I 

.ev) (f-r?) - (r’.e,,) (r’.ep,)] dm = 

s (g,yygyw - g,rrgpa,) py’ps’ dm = Iaep 
m 

Here gamp- is the metric tensor of the geometrical manifold in which the motion of a 
rigid body of mass m is considered, and Z,,p, is the inertia tensor [ll]. Thus the funda- 
mental tensor a,a represents an inertial matrix in the following generalized form: 

%a=lmg;B” za;Fi (3.1) 

We shall also show the validity of the relations 

dqy ra ---oQ 
PY dt - P (3.2) 

where oBa - aYear’ ’ 1s a skew-symmetric tensor [12] of the elementary rotation. The 

time derivative of the vector r’ is 
dr’ , 
7 = (P’” + Pp’o$) e,, 

since ea. = op=e,. On the other hand we have 

dr Dp” -- - ea, T. e. pea + r;yppq’y = p’” + ObapB dt - dt 

and this yields the relations (3.2). Comequently Eqs. (2.4) also represent the covariant 
equations of motion of a rigid body. Under the conditions (3.1) and (3.2) these equations 
have the form D2p, d DP, 

( ) 
DPY 

- =dt 7 +yzY-yg-=Q, dta 

Taking into account the fact that the impulses Dp,/dt = pa = Z,pop, we obtain from 

these relations the well known Euler equations, 

4, If the generalized forces are equal to zero, then 

DP, k k ‘1_ ‘I 
dt = aaPk = aaaklqo - aLzrQo 

This shows that, since the bipoint tensor a,, is a covariantly constant tensor and qo” are 

the constant initial parameters, the impulses pa remain covariantly constant along the 
trajectory. The relations (4.1) can also be written in a different manner (s is the arcof 
the trajectory) DPG 

ds’ s =aalr 

Since here we also have s’ = so’ = const, it follows that: 

and the latter relation represents the differential equations of the geodesic [6]. Using the 
absolute tensor integral, we obtain the geodesic equations in their final form [i3] 

Pa = aa&r ts - sO) + %&pk (4.2) 
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The same result can be obtained using the Galilean transformations ri = roi + 
V,i(t-tt,) (i=i, . . . . IV). Scalar multiplying these equations by m&i / aqa and sum- 
ming over i , we obtain N 

2 mi*i (4.3) 

i=1 

Using the arguments given above we obtain, in accordance with the well known notation 

Substituting these into (4.3), we obtain the covariant Galilean transformation in the form 

pa = a&ok + %‘a&” (t - to) (4.4) 

Since so = s,’ = (s - s,Jl(t - to), the equations (4.2) follow from (4.4). Therefore, 
when the generalized forces are absent, the representative point of a mechanical system 

moves along the geodesic in the successive direction. This assertion is based on the 

Galilean transformations and on definite integration of the system of equations of mo- 
tion. It is also shown that the generalized impulse is covariantly constant during the 

motion of a holonomic mechanical system when the interactions of its points cancel 
each other out. 

The above results embrace the fundamental Hertz law [14], the Newton’s and Galileo’s 
postulates and the Galilean transformations. They make possible the reformulation of 
the first postulate of dynamics in the following form: if the interactions between the 
bodies cancel out, then the impulse of the motion of the system is covariantly constant 
and the representative point of the system moves along the geodesic in the successive 
direction. 
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We consider the behavior of the integral 
t 

1 (t) = [ f (colt, mt) dt 

0 

as t + + 00 . Here f (cpr, cps) is a continuous function of a two-dimensional torus 
T2 (qrc~~ mod I}, and the ratio of the frequencies o2 / o1 is irrational, The problem was 

first studied by Poincari [l] and is often encountered in analytic studies of the dynamic 
systems. 

It is well know [l, 21 that if 
11 

TT 
hb 

f (Cplt w)dwd~z> O(<O) 

then I(t) -+ + 00 (- CO) as t + + 00. A difficulty arises when the mean spatial value 
of the function f is zero. Poincan? used examples to show in [1] that in this case the 
integral I (t) can tendeither to + CO or to - 00 (like t’, 0 < tl < 1) and, in the most 
interesting case, be unbounded but able to approach its initial value (equal to zero) infi- 
nitely many times and as closely as required. A question naturally arises of determining 
the conditions under which the integral I (t) will be recurrent (Poisson stability). The 
first step towards this solution consists of inspecting the discrete analog of the problem, 
and this helps us to establish that the recurrence takes place if the function f is twice 
continuously differentiable. 

1, We assume that a continuous function f (5) is given on the circumference 

S’ {X mod 1) . kt a be an irrational number. We construct the sum 

N-I 


